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Abstract

Decentralized, efficient, and collabora-
tive information dissemination is a crit-
ical aspect for effective applications in
disaster response and autonomous vehi-
cles. Here, we focus on Multi-Agent Re-
inforcement Learning (MARL) employ-
ing Graph Attention Networks (GATs)
to learn dissemination strategies while
being compatible with current standard
broadcast protocols such as Optimized
Link State Routing Protocol (OLSR).

Overview

▶ Current Limitations: Standard
Multi-Point Relay (MPR) solutions
require careful parameter tuning.

▶ Opportunities: Broadcast protocols
allow the exchange of control
messages between neighboring
nodes to enable cooperation.

▶ Our idea: Use MARL to learn
dissemination strategies and Graph
Neural Networks (GNNs) to
exchange learned latent
representations between the agents.

Key Contributions

Our key contributions include:
▶ Developing a Partially Observable

Stochastic Game (POSG)
formulation for information
dissemination with reduced 2-hop
knowledge compared to MPR.

▶ Proposing two methods based on
Graph Convolutional Reinforcement
Learning characterized by different
levels of communication overhead.

▶ Evaluating our methods,
demonstrating efficiency in network
coverage and message optimization
when compared to a well-known
heuristic (MPR) and a MARL
baseline (DGN-R).
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The observing node (5) is not aware of
its two-hop neighborhood structure,

which is a more constrained observation
compared to standard MPR heuristics.

Method

▶ We encapsulate the participation of a node in the
dissemination process within a local horizon, limiting the
active involvement to a defined number of steps.

▶ Observation: Agents identify one-hop neighbors and their
degree (i.e. number of neighbors), aligning with a constrained
observation space compared to the Neighborhood Discovery
Protocol in OLSR.

▶ Binary actions: to forward the message or not.
▶ The reward mechanism for agents encourages 2-hop

coverage efficiency, incorporating penalties based on
forwarding behavior and the unexploited coverage potential.
The reward function is defined as:

ri,t =
υ(Mi, t)

|Mi|
− p(i, t),

where υ(Mi, t) accounts for the two-hop coverage of agent i,
and p(i, t) is a penalty function, depending on the agent’s
actions:
▷ If agent i has forwarded the message, a neighborhood

shared transmission cost is applied, based on the total
number of messages sent within its neighborhood.

▷ If agent i has not forwarded the message, a coverage
potential penalty is applied, reflecting the unexploited
opportunity to reach uncovered neighbors.

Dynamic Agents Participation Based on Message Reception
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Observation Example with Node Features
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A1 A2 A3 A4

2 3 0 0 0 0 0
4 1 1 1 0 0 0
5 3 1 0 0 1 0
7 4 0 0 0 0 0

L-DGN Architecture
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Ablation Study

▶ DGN-R-Duel : Merges aspects of L-DGN and
DGN-R with a dueling network.

▶ L-DGN-MP: Removes the second GAT layer
from L-DGN, replacing it with a global max
pool operator.

▶ L-DGN-MPNC: Eliminates both the second
GAT layer and concatenation of encoding
stages from L-DGN. Performance decrease
noted, but serves as a basis for the simplified
and efficient HL-DGN architecture.

Results

Nodes Method Coverage
Data

Messages

Bootstrap
Control

Overhead

Two-Hop
Anonymity

20
MPR 100% 12.05 60 No

DGN-R 100% 21.06 60 Yes
L-DGN 99.95% 11.84 60 Yes

HL-DGN 100% 13.17 40 Yes
50

MPR 100% 30.8 150 No
DGN-R 99.98% 60.65 150 Yes
L-DGN 93.3% 25.42 150 Yes

HL-DGN 100% 35.1 100 Yes

▶ Bootstrap Control Overhead: Number of
control messages needed to be exchanged
beforehand.

▶ Data Messages: Number of forwarding
actions performed by the agents.

Conclusion

▶ Shown the effectiveness of MARL in
optimizing information dissemination in
broadcast networks, comparing our
solutions with traditional heuristics and a
MARL baseline on needed control overhead
and data message efficiency.

▶ Our future work will explore dynamic graphs
and reduce control overhead.

▶ Extension of the MARL approach to
real-world network scenarios and broader
domains like social networks and
computational social choice.


