

Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning Framework for Congestion Control in Tactical Environments

Raffaele Galliera^{§,†}, Mattia Zaccarini[‡], Alessandro Morelli[§] Roberto Fronteddu[§], Filippo Poltronieri[‡], Niranjan Suri^{*,§,†}, Mauro Tortonesi[‡]

> [†]The University of West Florida (UWF) [‡]The University of Ferrara (UNIFE) [§]Institute for Human and Machine Cognition (IHMC) ^{*}US Army DEVCOM Army Research Laboratory (ARL)

> > Presenter: Raffaele Galliera (rgalliera@ihmc.org) - Paper #354

Background The Congestion Control Environment Challenges

Method

Experimental Setting

Results

CONGESTION CONTROL

- The channel can saturate causing delays and re-transmissions
- Different heuristics are used (eg, **TCP Cubic**).
- Congestion Window (CWND): control over bytes allowed to be in-flight.
- Heavy congestion can take a link to an impracticable state.

Background O O O O O O O	Method 00 0	Experimental Setting 0 00 00	Results O O O	Backup 0000
---	-------------------	---------------------------------------	------------------------	----------------

Starting Point

Physical Training network.

R. Galliera, A. Morelli, R. Fronteddu and N. Suri, "MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion Control in Real Networks", NOMS 2023 IEEE/IFIP Network Operations and Management Symposium

Background O O O O O O O O O O O O O	Method 00 0	Experimental Setting 0 00 00	Results 0 0 0	Backup 0000
---	-------------------	---------------------------------------	------------------------	----------------

The Agent's Perception

R. Galliera, A. Morelli, R. Fronteddu and N. Suri, "MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion Control in Real Networks", NOMS 2023 IEEE/IFIP Network Operations and Management Symposium

MARLIN SUMMARY

- ► **Partnering protocol:** Mockets.
- ► Non-blocking communication.
- Third-party sources utilize the shared link
- Learning algorithm: Soft Actor-Critic (SAC).
- ► Action space: [-1, 1] tweaking the CWND.
- Action-Observation History: 10 steps.

TACTICAL NETWORKING ENVIRONMENTS

- **Designing networking scenarios** might become unfeasible.
- ► Reproducibility.
- **Reinforcement signals** in tactical networks.

BACKGROUND METHO	EXPERIMENTAL SETTING	Results Backup 0 0000 0	?
------------------	----------------------	-------------------------------	---

Design a **flexible framework** to train agents in **dynamic** and **unreliable networking** scenarios.

Background Methe	D EXPERIMENTAL SETTING	Results 0 0	Backup 0000
------------------	------------------------	-------------------	----------------

Background

Method Framework Design Rewarding in Tactical Networks

Experimental Setting

Results

Extending the MARLIN framework

Background	Method	Experimental Setting	Results	Backup
80000	00	80	8	0000
00	0	00	8	

Scheduling Link Behaviors

0	Background 00000 00	Метнор ○○ ●	Experimental Setting	Results 0 0	Backup 0000
---	---------------------------	-------------------	----------------------	-------------------	----------------

Reward

$$r_t = -\frac{target_t[1 + retr * (1 - loss_c)]}{target_t + acked_t^{cumulative}}$$
(1)

Background

Method

Experimental Setting Networking Scenario Evaluating the Agent

Results

Background 0 00000 00 Method 00 0 Experimental Setting

Results

Backup 0000

LINK TRANSITIONS

SATCOM link Bandwidth: 1Mb/s Delay: 500ms UHF Radio link Bandwidth: 256Kb/s Delay: 125ms

((001

Major training details:

- ► 500K steps
- ► Fixed random packet loss (0% SATCOM, 3% UHF Radio)
- ► Link switch after 10 Seconds from the episode start

Background 0 00000 00 Method 00 Experimental Setting

Results

Backup 0000

THIRD-PARTY TRAFFIC BEHAVIORS

(a) Traffic during SATCOM link

(b) Traffic during UHF link

Flows generated with Multi-Generator (MGEN) Network Test Tool - U.S. Naval Research Laboratory

TESTING SCENARIO

- Objective: 600KB payload transfer
- ► Varying UHF radio link random packet loss (0-3%)
- ▶ 100 testing episodes for each packet loss value
- Metrics used:
 - ► Transfer time (s)
 - Retransmissions
 - RTT Transition Impact

RTT TRANSITION IMPACT (RTI)

$$RTI = \ln\left(\frac{\sum_{i=1}^{m} \frac{rtt_{i,max}}{rtt_{i,nom}}}{m}\right)$$

(2)

- ▶ *m* link transitions
- *rtt_{i,max}* maximum *rtt* detected during link *i*
- *rtt_{i,nom}* nominal *rtt* value during link *i*

Background 0 00000 00	Method 00 0	Experimental Setting 0 00 00	Results	Backup 0000
--------------------------------	-------------------	---------------------------------------	---------	----------------

Background

Method

Experimental Setting

Results RTI Retransmissions Conclusion

Background 0 00000 00	Method 00 0	Experimental Setting 00 00		Backup 0000
--------------------------------	-------------------	----------------------------------	--	----------------

Average Transfer Time - RTI

Background Method Experimental Setting Results Backup

Retransmissions

During experiments with 3% random packet loss set on the UHF link.

Conclusion

- A containerized RL environment to train agents for CC.
- Centralized control of the entire training environment.
- Programmable link behaviour.
- **Retransmission-sensitive** rewards.
- **Competitive** trained policies.

GitHub Repository

Background 0 00000 00	Method 00 0	Experimental Setting	Results 0 0	Backup •000
--------------------------------	-------------------	----------------------	-------------------	----------------

Background

Method

Experimental Setting

Results

Background 0 00000 00

Hyperparameters

-

Hyperparameter	Value
Training steps	$5 imes 10^5$
History length	10
Training episode length	200
Learning rate	$3 imes 10^{-4}$
Buffer size	$2.5 imes 10^5$
Warm-up (learning starts)	1×10^4 steps
Batch size	512
Tau	$5 imes 10^{-3}$
Gamma	0.99
Training Frequency	1/episode
Gradient Steps	-1 (same as episode length)
Entropy regularization coefficient	"auto" (Learned)
MLP policy hidden layers	[400, 300]

Table: Hyperparameters used in our experiment.

Background 0 00000 00

State

	Feature	Description		Statistic
1	Current cwnd	Current cwnd	1	Last
2	KBs Sent	Amount of KB sent *	2	Mean
3	New KBs sent	Amount of KB acked *	3	STD
4	Acked KBs	Amount of KB acked *	4	Min
5	Packets sent	Packets sent *	5	Max
6	Retransmissions	Number of packets retransmitted *	6	EMA
7	Instantaneous Throughput	Throughput *	7	Difference from Previous
8	Instantaneous Goodput	Goodput*		
9	Unacked KBs	Amount of KBs in flight		
10	Last RTT	Last rtt detected *		
12	Min RTT	Min rtt *		
12	Max RTT	Max rtt *		
13	SRTT	Smoothed rtt *		
14	VAR RTT	rtt variance *		
		* During the last rtt timeframe		

Every feature has 7 nested statistics with a 10 observations history.

IMPLEMENTATION STACK

- **Reinforcement Learning framework:** Stable Baselines 3.
- ► **Partnering Protocol:** Mockets.
- ► Protocol-Agent Communication: gRPC.
- **Network Emulation:** Containernet + RPYC.
- ► Third-Party traffic: MGEN